s^2+111=131

Simple and best practice solution for s^2+111=131 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for s^2+111=131 equation:



s^2+111=131
We move all terms to the left:
s^2+111-(131)=0
We add all the numbers together, and all the variables
s^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $

See similar equations:

| 6n^2-10=470 | | x²+6x=–5 | | 7k−4k=9 | | 6h=–72 | | 6g+8g=2g+16 | | 180=(x+4)+(3x+-17)+(2x-5) | | 16=320-40*q | | 2/3p+5=3/4 | | 180=x+x+x | | 4q^2+3q=3q^2-14q+18 | | 4q^2+3q=3q^2-14q | | -n^2-4/2=16 | | (-2x-5)(-3x-4)=0 | | Y=4x^2-18x-10 | | Y=4x^2-18-10 | | -3(-1x-1)=-9-3x | | x-0.15x+12=x | | 3(2v-2)=6+4v | | 0.8a=51 | | -8(3-3r)=7r+27 | | .4x+105=180 | | 36n-31=3n+5 | | -n-4/2=16 | | 2+1p=-2(-1-7p) | | 2p+8=−2 | | 6(-6x+2)=-276 | | 2(7x+5)=-14+6x | | (3x^-2/5)+20=27 | | -114=-6(1-3n) | | -112=8-8(1+2x) | | 3x^-2/5+20=27 | | 8x+15=4+25 |

Equations solver categories